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Abstract The standard architecture of synthetic aperture radar (SAR) automatic target recognition (ATR) con-
sists of three stages: detection, discrimination, and classification. In recent years, convolutional neural networks
(CNNs) for SAR ATR have been proposed, but most of them classify target classes from a target chip extracted
from SAR imagery, as a classification for the third stage of SAR ATR. In this report, we propose a novel CNN for
end-to-end ATR from SAR imagery. The CNN named verification support network (VersNet) performs all three
stages of SAR ATR end-to-end. VersNet inputs a SAR image of arbitrary sizes with multiple classes and multiple
targets, and outputs a SAR ATR image representing the position, class, and pose of each detected target. This
report describes the evaluation results of VersNet which trained to output scores of all 12 classes: 10 target classes,
a target front class, and a background class, for each pixel using the moving and stationary target acquisition and
recognition (MSTAR) public dataset.
Key words Automatic target recognition (ATR), Multi-target detection, Multi-target classification, Pose estima-
tion, Convolutional neural network (CNN), Synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) transmits microwaves and
generates imagery using microwaves reflected from objects,
under all weather, day and night conditions. However, it is
difficult for a human to recognize a target from SAR imagery
since there is no color information and the shape reflected
from a target changes. Therefore, automatic target recogni-
tion (ATR) from SAR imagery (or image) has been studied
for many years.

The standard architecture of SAR ATR consists of three
stages: detection, discrimination, and classification. Detec-
tion: the first stage of SAR ATR detects a region of interest
(ROI) from a SAR image. Discrimination: the second stage
of SAR ATR discriminates whether an ROI is a target or
non-target region, and outputs the discriminated ROI as a
target chip. Classification: the third stage of SAR ATR clas-
sifies target classes from a target chip.

In recent years, methods using convolution neural network
(CNN) [1]–[4] have been successful in the classification of im-
age recognition. Similarly, CNNs for SAR ATR have been
proposed. On the moving and stationary target acquisition
and recognition (MSTAR) public dataset [5], the target clas-
sification accuracy of the CNNs [6]–[9] exceeds conventional

(a) Input. (b) VersNet. (c) Output.

Fig. 1 Illustration of input and output of proposed CNN. The
CNN named VersNet performs automatic target recog-
nition of multi-class / multi-target in variable size SAR
image. In this case, the input is a single image with three
classes and four targets (upper left and lower right targets
are the same class). VersNet outputs the position, class,
and pose (front side) of each detected target.

methods (support vector machine, etc.). However, most of
CNNs for SAR ATR classify target classes from a target chip
extracted from SAR image but do not classify multiple tar-
gets or a target chip (or SAR image) of an arbitrary size.
In addition, a CNN for target classification can output score
or probability of each class as classification result, but it is
difficult for a human to verify the classification result.

We propose a new CNN which inputs a SAR image of vari-
able sizes with multi-target and outputs a SAR ATR image.
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(a) Input data Xn. (b) VersNet. (c) Output data Yn. (d) Supervised data Dn.

Fig. 2 Illustration of training for proposed CNN.

2. Related Work

In segmentation of image recognition giving classification
label for each pixel of an image, methods using CNN [10]–[12]
show a good performance in recent years. For SAR image,
segmentation of a target region which reflected from a tar-
get, and a shadow region which not reflected from a target by
radar shadow is performed. The CNN [13], WD-CFAR [14],
and other methods [15]–[17] have been proposed for segmen-
tation of a SAR image. The reference [18] describes manually
generating the segmentation of target and shadow regions
as ground truth. Generally, for segmentation using CNN,
supervised learning is performed using label images corre-
sponding to input images, but the difficulty of the genera-
tion of label images for SAR ATR is a problem for applying
this method. In response to this problem, the reference [13]
describes the CNN which trained to output a contour using
the contour data of target and shadow regions generated by
computer graphics as ground truth.

In contrast, our proposed CNN performs target detection,
target classification, and pose estimation by segmentation.

3. Proposed Method

A proposed CNN named verification support network (Ver-
sNet) inputs an arbitrary size SAR image with multiple
classes and multiple targets, and outputs the position, class,
and pose of each detected target as a SAR ATR image.

Figure 1 shows the outline of VersNet for end-to-end SAR
ATR. VersNet is a CNN composed of an encoder and a de-
coder. The encoder of VersNet extracts features from an
input SAR image. The decoder converts the features based
on the conversion rule in the training data and outputs it as
a SAR ATR image.

Here, we define the end-to-end SAR ATR as a task of su-
pervised learning. Let {(Xn, Dn), n = 1, ..., N} be the train-
ing dataset, where Xn = {x

(n)
i , i = 1, ..., |Xn|} is SAR image

as input data, Dn = {d
(n)
i , i = 1, ..., |Dn|, d

(n)
i ∈ {1, ..., Nc}}

Table 1 Dataset. The training and testing data contain respec-
tively 2747 and 2420 target chips from the MSTAR.

Class Training data Testing data
2S1 299 274

BMP2 (9563) 233 195
BRDM2 298 274
BTR60 256 190（1）

BTR70 233 196
D7 299 274
T62 299 273

T72 (132) 232 196
ZIL131 299 274
ZSU234 299 274

Total 2747 2420

is label image for Xn, which is the supervised data of VersNet
output data Yn = f(Xn; θ). The values of |Xn| and |Dn| rep-
resent the number of pixels (vertical × horizontal) of SAR
and label image, respectively. When d

(n)
i is 1, it represents

a background class, and when d
(n)
i is 2 or more, it indicates

a corresponding target class. Let L(θ) be a loss function,
the network parameters θ are adjusted using training data
so that the output of loss function becomes small.

4. Experiments

4. 1 Dataset
For training and testing of VersNet, we used the ten classes

data shown in Table 1 from the MSTAR [5]. The dataset con-
tains 2747 target chips with a depression angle of 17◦ for the
training and 2420 target chips with a depression angle of 15◦

for the testing. As described later in Appendix 1, five target
chips of target class BTR60 for testing data were excluded.

Of course, label images for segmentation do not exist in
the MSTAR dataset. Therefore, we create label images for
VersNet. Figure 2(d) shows samples of label images. The
label images have all 12 classes: 10 target classes, a target
front class, and a background class.

（1）：Five target chips were excluded. Appendix 1 shows the details.
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Fig. 3 Detail architecture of VersNet for experiments. The Ver-
sNet refers to the fully convolutional network called FCN-
32s.

4. 2 VersNet: Proposed CNN
Figure 3 shows a detailed architecture of VersNet for ex-

periments. The encoder of the VersNet consists of four con-
volution blocks and two convolution layers. The convolution
block contains two convolution layers of kernel size 3×3 and a
pooling layer similarly to VGG [19]. The activation function
of all convolutions except the final convolution uses rectified
linear unit (ReLU) [20]. Dropout [21] is applied after a con-
volution of kernel size 6 × 6. Batch normalization [22] is not
applied. The decoder of the VersNet consists of a transposed
convolution [23] that performs 16 times upsampling.

As the loss function, we use cross entropy expressed by

L(θ) = −
∑

x

p(x) log q(x). (1)

For the optimization of the loss function, we use stochastic
gradient descent (SGD) with momentum.

Since the VersNet is a CNN without fully connected layers
called fully convolutional network (FCN) [10], even if train-
ing is done with small size images, the VersNet can process
SAR images of arbitrary size.

4. 3 Classification Accuracy
First, we show results of classification accuracy.

Table 2 Classification accuracy of testing data. The overall ac-
curacy is 99.55%.

Class Accuracy (%)
2S1 100.00

BMP2 100.00
BRDM2 98.54
BTR60 98.42
BTR70 98.98 Average Overall

D7 100.00 99.52 99.55
T62 99.63
T72 100.00

ZIL131 99.64
ZSU234 100.00

Table 3 Definitions of TP, FP, FN, and TN.
��������Predicted

True
Condition positive Condition negative

Condition positive True positive (TP) False positive (FP)
Condition negative False negative (FN) True negative (TN)

Table 2 shows classification accuracy for the target chips
of testing if we simply select the majority class of maxi-
mum probability for each pixel from ten target classes as the
predicted class. An average accuracy of ten target classes
is 99.52%, and an overall accuracy is 99.55% (2409/2420),
which is almost the same as a state-of-the-art accuracy. Also,
Table A· 2 of Appendix shows a confusion matrix for the tar-
get chips of testing.

4. 4 Segmentation Performance
Next, we show results of segmentation performance.
We use precision, recall, F1, and intersection over union

(IoU) as metrics of segmentation performance. Each metrics
is given by

Precision = TP
TP + FP

, (2)

Recall = TP
TP + FN

, (3)

F1 = 2 · precision · recall
precision + recall

, (4)

IoU = TP
TP + FP + FN

, (5)

where the definitions of TP, FP, FN, and TN are shown in
Table 3.

Table 4 shows precision, recall, F1, and IoU for all the pix-
els of testing. The average IoU of all 12 classes and 10 target
classes are 0.915 and 0.923, respectively. Also, Table A· 3
of Appendix shows a confusion matrix for all the pixels of
testing.

Figure 4 shows a histogram of IoU for each image with ten
target classes. A mean and a standard deviation of the IoU
are 0.930 and 0.082, respectively.
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Table 4 Segmentation performance for all pixels of testing. The
average IoU of ten target classes is 0.923.

Class Precision Recall F1 IoU
Background 0.997 0.999 0.998 0.996

2S1 0.970 0.953 0.961 0.925
BMP2 0.982 0.942 0.962 0.926

BRDM2 0.978 0.921 0.949 0.903
BTR60 0.984 0.935 0.959 0.921
BTR70 0.980 0.935 0.957 0.917

D7 0.968 0.954 0.961 0.924
T62 0.974 0.949 0.961 0.925
T72 0.978 0.962 0.970 0.941

ZIL131 0.967 0.953 0.960 0.923
ZSU234 0.955 0.966 0.960 0.924
Front 0.885 0.833 0.858 0.752

Average of 12（2） 0.968 0.942 0.955 0.915
Average of 10（3） 0.974 0.947 0.960 0.923

Fig. 4 Histogram of IoU.

Fig. 5 Cumulative distribution of IoU.

Figure 5 shows a cumulative distribution of IoU for each
image with ten target classes. The empirical cumulative dis-
tribution function P(IoU ≤ 0.5) and P(IoU ≤ 0.9) are about
0.01 and 0.1, respectively.

4. 5 Multi-Class and Multi-Target
Finally, we show the VersNet output for multi-class and

multi-target input.
Figure 6 shows input (SAR image of 10 target classes and

25 targets), output (SAR ATR image), and ground truth.

5. Conclusion

By applying CNN to the third stage classification in the
standard architecture of SAR ATR, the performance has
been improved. In order to improve the overall performance
of SAR ATR, it is important not only to improve the per-
formance of the third stage classification but also to improve
the performance of the first stage detection and the second
stage discrimination.

In this report, we proposed a CNN based on a new archi-
tecture of SAR ATR that consists of a single stage, i.e. end-
to-end, not the standard architecture of SAR ATR. Unlike
conventional CNNs for target classification, the CNN named
VersNet inputs a SAR image of arbitrary sizes with multiple
classes and multiple targets, and outputs a SAR ATR image
representing the position, class, and pose of each detected
target.

We trained the VersNet to output scores include ten target
classes on MSTAR dataset and evaluated its performance.
The average IoU for all the pixels of testing (2420 target
chips) is over 0.9. Also, the classification accuracy is about
99.5%, if we select the majority class of maximum probability
for each pixel as the predicted class.
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(a) Input (SAR image of 10 target classes and
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(b) Output (SAR ATR image). (c) Ground truth.
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Appendix

1. Excluded Target Chips from Testing Data
Table A· 1 shows a list of target chips excluded from test-

ing data. Figure A· 1 shows inputs (target chips) and outputs
(SAR ATR images) of the VersNet.

2. Confusion Matrix of Testing Data
Table A· 2 shows a confusion matrix for the images (target

chips) of testing, and Table A· 3 shows a confusion matrix
for all the pixels of testing. Each column in the confusion
matrixes represents the actual target class, and each row rep-
resents the target class predicted by the VersNet.
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(a) Inputs (target chips of BTR60 with target aspect angle from
292◦ to 313◦).

(b) Outputs (SAR ATR images).

Fig. A· 1 Excluded target chips from testing data. As for the 2nd-row five target chips of inputs (a), the influence of the radar shadow
of a certain other object appears strongly. The influence appears also in the outputs (b) of the VersNet.

Table A· 2 Confusion matrix for images of testing.
��������Predicted

True
2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234

2S1 274 0 2 0 2 0 0 0 0 0
BMP2 0 195 0 1 0 0 0 0 0 0

BRDM2 0 0 270 0 0 0 0 0 0 0
BTR60 0 0 0 187 0 0 0 0 0 0
BTR70 0 0 0 0 194 0 0 0 0 0

D7 0 0 0 0 0 274 0 0 0 0
T62 0 0 0 1 0 0 272 0 0 0
T72 0 0 0 0 0 0 0 196 0 0

ZIL131 0 0 2 0 0 0 0 0 273 0
ZSU234 0 0 0 1 0 0 1 0 1 274

100.00 100.00 98.54 98.42 98.98 100.00 99.63 100.00 99.64 100.00
Accuracy (%) Average 99.52

Overall 99.55

Table A· 3 Confusion matrix for all pixels of testing.
��������Predicted

True
Background 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Front Precision

Background 21032341 4757 5013 7127 3808 5187 3308 5611 3535 4459 2907 20339 99.69
2S1 1646 124249 169 1071 0 602 0 71 0 89 0 209 96.99

BMP2 1080 5 99985 34 376 6 0 0 178 0 0 192 98.16
BRDM2 1947 109 119 113068 11 43 0 0 0 0 0 263 97.84
BTR60 1159 0 2 0 84603 7 0 0 0 12 0 191 98.41
BTR70 1758 0 0 0 23 97469 0 0 0 0 0 251 97.96

D7 2166 0 0 0 0 0 75195 15 0 9 3 301 96.79
T62 1877 775 0 20 714 0 0 140983 7 91 13 327 97.36
T72 1546 31 354 0 142 0 0 6 102533 0 0 202 97.82

ZIL131 2701 12 2 803 2 0 1 123 0 112804 1 193 96.71
ZSU234 2312 0 0 0 462 0 2 1161 16 309 96286 277 95.50
Front 9590 490 448 613 349 896 342 620 363 567 492 113784 88.51
Recall 99.87 95.26 94.24 92.12 93.49 93.53 95.37 94.88 96.16 95.32 96.57 83.34

F1 99.78 96.12 96.16 94.90 95.89 95.69 96.07 96.10 96.98 96.01 96.03 85.85
IoU 99.56 92.53 92.61 90.29 92.10 91.74 92.44 92.50 94.14 92.33 92.37 75.20
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