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Abstract We propose a new convolutional neural network (CNN) which performs coarse and fine segmentation
for end-to-end synthetic aperture radar (SAR) automatic target recognition (ATR) system. In recent years, many
CNNs for SAR ATR using deep learning have been proposed, but most of them classify target classes from fixed
size target chips extracted from SAR imagery. On the other hand, we proposed the CNN which outputs the score
of the multiple target classes and a background class for each pixel from the SAR imagery of arbitrary size and
multiple targets as fine segmentation. However, it was necessary for humans to judge the CNN segmentation result.
In this report, we propose a CNN called SAR ATR with verification support (SAVERS), which performs region-wise
(i.e. coarse) segmentation and pixel-wise segmentation. SAVERS discriminates between target and non-target, and
classifies multiple target classes and non-target class by coarse segmentation. This report describes the evaluation
results of SAVERS using the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset.
Key words Automatic target recognition (ATR), Detection, Discrimination, Classification, Convolutional neural
network (CNN), Synthetic aperture radar (SAR)

1. Introduction

In recent years, methods using convolution neural network
(CNN) [1]–[4] have been successful in the classification of
image recognition. Similarly, CNNs for synthetic aperture
radar (SAR) automatic target recognition (ATR) have been
proposed. On the Moving and Stationary Target Acquisition
and Recognition (MSTAR) public dataset [5], the target clas-
sification accuracy of the CNNs [6]–[9] exceeds conventional
methods (support vector machine, etc.). However, most of
CNNs for SAR ATR classify target classes from a target chip
extracted from SAR image but do not classify multiple tar-
gets or a target chip (or SAR image) of an arbitrary size.
In addition, a CNN for target classification can output score
or probability of each class as classification result, but it is
difficult for a human to verify the classification result.

Figure 2a shows that the standard architecture of SAR
ATR consists of three stages: detection, discrimination, and
classification. Detection: the first stage of SAR ATR detects
a region of interest (ROI) from a SAR image. Discrimina-
tion: the second stage of SAR ATR discriminates whether
an ROI is a target or non-target region, and outputs the
discriminated ROI as a target chip. Classification: the third
stage of SAR ATR classifies target classes from a target chip.

In contrast, we proposed an architecture that performs de-
tection, discrimination, and classification in a single stage

(a) Input. (b) SAVERS. (c) Output.

Fig. 1 Illustration of input and output of proposed CNN. The
CNN named SAVERS performs automatic target recog-
nition of multi-class / multi-target in variable size SAR
image. In this case, the input is a single image with two
targets of different classes and two clutters. SAVERS out-
puts the position, class, and shape of each detected target.

(Fig. 2b). Furthermore, we proposed a CNN which inputs a
SAR image of variable sizes with multi-target and outputs a
SAR ATR image.

In this report, we propose a new CNN focusing on object
detection by coarse segmentation and discrimination between
target and non-target using clutter chips.

2. Related Work

In segmentation of image recognition giving classification
label for each pixel of an image, methods using CNN [10]–
[12] show a good performance in recent years. For SAR im-
age, segmentation of a target region and a shadow region is
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(a) Input. (b) Coarse segmentation output. (c) Fine segmentation output. (d) Composite output.

Fig. 3 Outputs of coarse segmentation, fine segmentation, and composite.

(a) Standard architecture.

(b) Proposed architecture.

Fig. 2 Architecture for an end-to-end SAR ATR system. The
standard architecture is split into three stages. The Pro-
posed architecture consists of a single stage.

performed. The CNN [13] and other methods [14]–[17] have
been proposed for target and shadow region segmentation
of a SAR image. In contrast, we proposed the CNN named
Versnet [18] performs target detection, target classification,
and pose estimation by segmentation.

Similarly, object detection that estimates the position, size,
and target class of multi-target is also known. In object de-
tection, the position and size are represented by bounding
boxes. For object detection, CNNs [19]–[21] are proposed.
Also, the CNN for object detection is applied to SAR ATR
in [22].

On the other hand, we propose a CNN which simultane-
ously performs object detection and segmentation.

3. Proposed Method

A proposed CNN named SAR ATR with verification
support (SAVERS) inputs an arbitrary size SAR image with
multiple classes and multiple targets, and outputs the posi-
tion, class, and shape of each detected target as a SAR ATR
image.

Figure 1 shows the outline of SAVERS for end-to-end SAR
ATR. SAVERS is a CNN composed of an encoder and a de-
coder. The encoder of SAVERS extracts features from an
input SAR image. The decoder converts the features based
on the conversion rule in the training data and outputs it as

a SAR ATR image.
Here, we define the end-to-end SAR ATR as a task of

supervised learning. Let {(Xn, Dn), n = 1, ..., N} be the
training dataset, where Xn = {x

(n)
i , i = 1, ..., |Xn|} is SAR

image as input data, Dn = {d
(n)
i , i = 1, ..., |Dn|, d

(n)
i ∈

{0, ..., Nc −1}} is label image for Xn, which is the supervised
data of SAVERS output data Yn = f(Xn; θ). The values of
|Xn| and |Dn| represent the number of pixels (vertical × hor-
izontal) of SAR and label image, respectively. When d

(n)
i is

0, it represents a background class, and when d
(n)
i is 1 or

more, it indicates a corresponding target class. Let L(θ) be
a loss function, the network parameters θ are adjusted using
training data so that the output of loss function becomes
small.

4. Experiments

4. 1 Dataset
For training and testing of SAVERS, we used the 11 classes

data shown in Table 1. The image chips have ten target
classes and a background (i.e. non-target) class.

The data of ten target classes contains 2747 target chips
with a depression angle of 17◦ for the training and 2420 target
chips with a depression angle of 15◦ for the testing from the
MSTAR [5] dataset. Five target chips of target class BTR60
for testing data were excluded. Table 2 shows a list of target
chips excluded from testing data.

The data of a background class contains 274 and 242 clut-
ter chips for the training and testing, respectively. We use
clutter chips provided by Adaptive SAR ATR Problem Set
(AdaptSAPS) [23] using the MSTAR dataset.

Of course, label images for segmentation do not exist in
the MSTAR dataset. Therefore, we create label images for
SAVERS. Figure 4d shows samples of label images. The label
images have all 11 classes: 10 target classes and a background
(i.e. non-target) class.

4. 2 SAVERS: Proposed CNN
Figure 5 shows a detailed architecture of SAVERS for ex-
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(a) Input data Xn. (b) SAVERS. (c) Output data Yn. (d) Supervised data Dn.

Fig. 4 Illustration of training for proposed CNN.

Table 1 Dataset. The training and testing data contain respec-
tively 3021 and 2662 image chips.

Class Training data Testing data
Background 274 242

2S1 299 274
BMP2 (9563) 233 195

BRDM2 298 274
BTR60 256 190
BTR70 233 196

D7 299 274
T62 299 273

T72 (132) 232 196
ZIL131 299 274
ZSU234 299 274

Total 3021 2662

Table 2 List of target chips excluded from testing data.

Class Filename Aspect angle (◦)
BTR60 HB03353.003 305.48
BTR60 HB04933.003 303.48
BTR60 HB04999.003 299.48
BTR60 HB05000.003 304.48
BTR60 HB05631.003 302.48

periments. The encoder of the SAVERS consists of four con-
volution blocks and two convolution layers. The convolution
block contains two convolution layers of kernel size 3 × 3 and
a max pooling layer similarly to VGG [24]. The activation
function of all convolutions except the final convolution uses
rectified linear unit (ReLU) [25]. Dropout [26] is applied after
a convolution of kernel size 4×4. Batch normalization [27] is
not applied. The decoder of the SAVERS consists of a trans-
posed convolution [28] that performs 16 times upsampling.

As the loss function, we use cross entropy expressed by

L(θ) = −
∑

x

p(x) log q(x). (1)

For the optimization of the loss function, we use stochastic
gradient descent (SGD) with momentum.

Since the SAVERS is a CNN without fully connected layers

Fig. 5 Detail architecture of SAVERS for experiments. The
SAVERS refers to the fully convolutional network called
FCN-32s.

called fully convolutional network (FCN) [10], even if train-
ing is done with small size images, the SAVERS can process
SAR images of arbitrary size.

4. 3 Coarse Segmentation
First, we show results of coarse segmentation.
The decoder output performs pixel-wise segmentation (i.e.

fine segmentation), whereas the encoder output is used for
region-wise segmentation (i.e. coarse segmentation).

Figure 6a shows class accuracy using the encoder output
before the average pooling layer. We simply use the maxi-
mum probability class (i.e. arg max(p)) as predicted class.
The class accuracy before average pooling is high in the four
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(a) Before average pooling.

(b) After average pooling.

Fig. 6 Classification accuracy of coarse segmentation.

areas near the center, but its value is 0.661 to 0.727. The
class accuracy of the peripheral area is 0.091 (242/2662) be-
cause the clutter chips are correctly classified as background
class.

Figure 6b shows class accuracy using the encoder output
after the average pooling layer. By performing an average
pooling, the scores dispersed in the four regions are aggre-
gated, and the class accuracy of the central region is in-
creased to 0.986 (2624/2662).

4. 4 Classification Performance of Coarse Segmen-
tation

Next, we show results of classification performance of
coarse segmentation output (i.e. the encoder output after
the average pooling layer).

We use precision, recall, and F1 as metrics of classification
performance. Each metrics is given by

Precision = TP
TP + FP , (2)

Recall = TP
TP + FN , (3)

F1 = 2 · precision · recall
precision + recall , (4)

Table 3 Definitions of TP, FP, FN, and TN.
��������Predicted

True
Condition positive Condition negative

Condition positive True positive (TP) False positive (FP)
Condition negative False negative (FN) True negative (TN)

Table 4 Classification performance of testing.

Class Precision Recall F1

Background 0.903 1.000 0.949
2S1 0.986 0.993 0.989

BMP2 1.000 0.995 0.997
BRDM2 1.000 0.978 0.989
BTR60 1.000 0.974 0.987
BTR70 1.000 0.990 0.995

D7 1.000 0.960 0.980
T62 0.989 0.985 0.987
T72 0.995 1.000 0.997

ZIL131 0.993 0.978 0.985
ZSU234 0.993 0.996 0.995

where the definitions of TP, FP, FN, and TN are shown in
Table 3.

Table 4 shows precision, recall, and F1 of testing. Since all
clutter chips are correctly classified as background (i.e. non-
target) class, the recall is 1.000. However, because the part of
the target chips is erroneously classified as background class,
the precision becomes 0.903, and F1 which is the harmonic
average of precision and recall is 0.949.

Table 5 shows a confusion matrix for the image chips of
testing. Each column in the confusion matrix represents the
actual class, and each row represents the class predicted by
the SAVERS.

Figure 7a shows a histogram of (1 − p0) for target and
clutter chips, where p0 is probability of background class ob-
tained by softmax function.

Figure 7b shows a cumulative distribution of (1 − p0) for
target chips. The empirical cumulative distribution function
P((1 − p0) ≤ 0.5) and P((1 − p0) ≤ 0.8) are about 0.01 and
0.1, respectively.

4. 5 Multi-Class and Multi-Target
Finally, we show the SAVERS output for multi-class and

multi-target input. Figure 8 shows input (SAR image), out-
put (SAR ATR image), and ground truth.

5. Conclusion

In this report, we proposed a CNN based on a new ar-
chitecture consisting of a single stage for end-to-end SAR
ATR system, not a standard architecture consisting of three
stages. Unlike conventional CNN for target classification, the
CNN named SAVERS inputs SAR imagery of arbitrary sizes
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Table 5 Confusion matrix of testing data.
��������Predicted

True
Background 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Precision

Background 242 1 0 3 3 1 11 0 0 6 1 0.903
2S1 0 272 1 1 0 1 0 1 0 0 0 0.986

BMP2 0 0 194 0 0 0 0 0 0 0 0 1.000
BRDM2 0 0 0 268 0 0 0 0 0 0 0 1.000
BTR60 0 0 0 0 185 0 0 0 0 0 0 1.000
BTR70 0 0 0 0 0 194 0 0 0 0 0 1.000

D7 0 0 0 0 0 0 263 0 0 0 0 1.000
T62 0 1 0 0 2 0 0 269 0 0 0 0.989
T72 0 0 0 0 0 0 0 1 196 0 0 0.995

ZIL131 0 0 0 2 0 0 0 0 0 268 0 0.993
ZSU234 0 0 0 0 0 0 0 2 0 0 273 0.993
Recall 1.000 0.993 0.995 0.978 0.974 0.990 0.960 0.985 1.000 0.978 0.996

F1 0.949 0.989 0.997 0.989 0.987 0.995 0.980 0.987 0.997 0.985 0.995

(a) Histogram. (b) Cumulative distribution.

Fig. 7 Histogram and cumulative distribution of (1 - softmax of background class).

(a) Input (SAR image). (b) Output (SAR ATR image). (c) Ground truth.

Fig. 8 Multi-class and multi-target.

with multi-class and multi-target, discriminates between tar-
get and non-target (i.e. clutter), and output the position,
class, and shape of each detected target as SAR ATR image.

We trained SAVERS to output scores of ten target classes
and a background class (i.e. clutter) per pixel using the tar-

get chips of the MSTAR dataset and the clutter chips pro-
vided by AdaptSAPS, and we evaluated the performance of
encoder output obtained by training. In the evaluation, the
classification accuracy of the encoder output applied with
average pooling was 98.6% (2624/2662).
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Although this accuracy is inferior to the classification per-
formance of state-of-the-art which classifies only the class of
the target chip, it acquired the function of discrimination
between target and non-target. A detailed analysis of the
classification performance shows that clutter chips are cor-
rectly classified as background class, but part of the target
chips are classified as background class, and extended study
is future work.
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